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Analysis of Asymmetrical Multilayer Ferrite-Loaded
Finlines by the Extended Spectral Domain Approach

Z. Fan and Steve R. Pennock, Member, IEEE

Abstract—The spectral domain approach is extended to analyze
the nonreciprocal propagation characteristics of asymmetrical
multilayer finlines containing magnetized ferrites. This extended
method offers several advantages. It can be applied to nonuni-
form cross-section geometries, uses only one set of basis functions,
and the dyadic Green’s function is efficiently derived by a recur-
sive algorithm. Fast convergence is obtained and the accuracy of
the method is verified by comparison with available computed
" and measured data. In comparison with symmetrical structures,
the additional design degree of freedom of the asymmetry can
be used to obtain wider bandwidth and higher nonreciprocity.
Of the various structures considered, a four-layer dual ferrite
(DF) structure is seen to be the best choice for realization of
nonreciprocal phase shifters with widest bandwidth.

I. INTRODUCTION

INLINES have been extensively investigated for use in

microwave and millimeter wave integrated circuits. A
wide variety of finline circuit components have been developed
including nonreciprocal ferrite devices such as nonrecipro-
cal phase shifters, isolators, and circulators [1], [2]. Several
methods, including field expansion, mode-matching, network
analysis and the spectral domain approach as in [2]-[6], have
been reported for the analysis of nonreciprocal propagation
characteristics of single or multilayer ferrite-loaded finlines.
However, all these techniques treated only symmetrical struc-
tures. The effects found in an asymmetrical structure, such as
is shown in Fig. 1 where a # ag, have not been studied to
date. Furthermore, only single-ferrite finline structures have
been considered and only their differential phase shift was
discussed.

Recently, the asymmetrical finline has been proposed [7]
for space applications. Several advantages over conventional,
symmetrical finlines are apparent, including ease of substrate
and device mounting, wider single-mode bandwidth, and the
additional design degree of freedom offered by the asymmet-
rical fin shielding. Devices such as filters and mixers have
been developed in the asymmetrical finline form, and the
propagation characteristics of the asymmetrical finlines with
a dielectric substrate have been analyzed using the spectral
domain method [7], [8]. To realize nonreciprocal components
at millimeter wave frequencies, ferrite layers need to be
inserted into a multilayer configuration. However, so far no
efforts have been devoted to the analysis of asymmetrical
multilayer finlines with magnetized ferrites.
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Fig. 1. Cross section of an asymmetrical multilayer finline where any layer
can be dielectric or ferrite and coordinate system used in the analysis.

The purpose of this paper is to extend the spectral domain
approach so that asymmetrical multilayer finlines containing
magnetized ferrites can be analyzed. We present a recursive
algorithm to derive the Fourier transformed dyadic Green’s
function for the different regions of the structures. Galerkin’s
procedure is applied to obtain solutions, and our data are seen
to compare favorably with published data. The advantages of
asymmetrical finlines are demonstrated, and the effects obtain-
able in various multilayer configurations on the nonreciprocity
and bandwidth are investigated.

II. FIELD REPRESENTATION BY FOURIER TRANSFORMS

Fig. 1 illustrates the cross section of an asymmetrical
multilayer finline and the coordinate system to be used in the
analysis. This structure consists of asymmetrically shielded
metal fins sandwiched between two multilayer substrates,
where any layer can be a magnetized ferrite or a dielectric.
The assumed time and 2 dependence exp j(wt — Bz) is for all
the field and current quantities, and omitted in the following
analysis for the sake of brevity.

Discrete Fourier transforms are used to represent the field
components in this structure, for instance

1 o= 5 ;
——— —J]oxT
Ho(z,y) = ~ _Z, H, (0, y)e™ . 6))
To satisfy the electric field boundary conditions at the side-
walls of the lower (y < 0) and upper (y > 0) regions, different
transform variables, o = «a,, and a = oy, respectively, have
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to be chosen for these regions. In the lower region (y < 0) the
values of «,, are equal to 2n7/a for the E, odd modes and to
(2n 4+ 1)7/a for the E, even modes with n = 0, &1, £2,---.
For the upper region (y > 0)a is replaced by ag.

If the ith layer in the lower region is a lossless ferrite that is
magnetized to saturation in the = direction, it is characterized
by a scalar relative permittivity €,, and a permeability tensor

(5]

1 0 0
fo=po |0 pr —jk )
0 jr  fpr

where p is the free space permeability. p, and x are depen-
dent on the angular frequency, the applied dc magnetic field
Hy and the saturation magnetization of the ferrite M.

From Maxwell’s curl equations we obtain coupled wave
equations for the z-directed electric and magnetic field com-
ponents in the Fourier transform domain

9*H, - .
—(")yT - ’Y;%Hm =, B, (3)
?E, -
Aa‘y— - 75E —’neHoc (4‘)

where 2, nn, 2, and 7. are given in [5].

Other Fourier transformed field components can be ex-
pressed in terms of H, and E, and their derivatives. Mul-
tiplying (3) by 7., operating 32 /8y? — 2 on (4) and adding
results in the following fourth-order differential equation for

b,
a2 82
(dy %“) <d_zf B

V= 0.5(72 +92 & \/(»yg

)E =0 5)

where

—72)2 + 477h77e>-

The solution to the equation can be expressed in terms of linear
combinations of sinh and cosh functions with two different
transverse wavenumbers in the y direction and contains the
four unknown modal amplitudes. The coefficients are deter-
mined by introducing the tangential electric field components
on the upper and lower surfaces of the layer. Then the
relationship between the tangential magnetic and electric field
components on the surfaces 7 and j = ¢ — 1 can be obtained
in the following matrix form

EIZ(O‘n»dJ) E}C(O‘mdj)
—Hx(an,d]) - P, S, Ez(amdj) (6)

IN:[:(an,di) R1 Tz Ez(arudl)
_Hx(an>di) Ez(a’nadi)

where the 2 x 2 submatrices [P,], [R,],[S.]. and [T;] depend
only on the electromagnetic properties and the thickness of the
1th layer. These are given in the Appendix and will be used
to derive the recursive algorithm in the following section. If
the ith layer of the lower region is a dielectric {y, = 1 and
% = 0), and characterized by scalar relative permittivity e,
and scalar permeability pg, the wave equations for H, and

E, will be uncoupled. There then exist TE-to-y and TM-to-y
modes, whose solutions for field components are well known
[9]. In this case, the elements of the submatrices in (6) can be
easily obtained, and these are also given in the Appendix.

III. RECURSIVE DERIVATION OF THE GREEN'S FUNCTION

To derive the integral equations for the tangential electric
field components on the aperture plane (y = 0), Green’s
functions for both regions have to be obtained first. There are
many techniques for deriving the multilayer Green’s functions.
These include the spectral domain immitance approach [10],
the mixed spectral domain approach [8]. the matrix method
[11], and the equivalent boundary method [12]. Most of them
assume isotropic media. Others can treat anisotropic media,
but cannot be applied to structures with nonuniform cross
sections. We now present a new recursive algorithm to derive
the Green’s functions for the multilayer anisotropic structure
with a nonuniform cross section as shown in Fig. 1. First, we
consider the lower region (y < 0). The relationship between
the tangential magnetic and electric field components at y =

~ and the lower surface of the jth layer can be expressed
in the following matrix

any ) E,,;(Oén,()_)
—H (n,07) | p0.) g0, E;(amO“) .
H (on,dy) | ~ [R(O,j) T(O,j)] Em(an7dj) - (D
—H, (o, dy) E.(an,d;)

It should be noted that in (6) and (7) the components
ﬁz,ﬁw,ﬁz,and Ew are continuous at the interface between
the jth and #th layers. Similarly, we can establish the
following relationship between the tangential magnetic and
electric field components at ¥y = 0~ and the lower surface
of the :th layer

H.(0n,07) Eﬂ(an,O )
_H, Liea.07) | _[P09 S0 Bofan0) |
(Oén- ) - [R(O,z) T(O,z):l EI( 7d7.) ( )
- m(an’ l) E (anadl)

Combining (6) with (7), the submatrices in (8) can be derived
in terms of the submatrices in (6) and (7). This results in the
following recursive equations

PO =[PON] 4+ [SONVIRS] 9
(RO = [RVIR®) (10)
(5] =—[SOVI(S. an
[09) =~ RV + (73] a2)

where 1 = 2,3, -,
region) and

k (k is the number of layers in the lower

Vi=[U1, [U]=I[R]-[T®] (13)
For i = 1, we have
po1 g1 P S
|:R(0,1) 70, 1)} |:R1 T1:|. (14)

The tangential electric field components must be zero at the
bottom conducting plane of the lower region, and using (8)
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with ¢ = k, the magnetic field Green’s function for the lower
region can be obtained as follows:

[afeni] -renine] oo

where [Y] = [P(®)]. Similarly the magnetic field Green’s
function for the upper region, [Y °(ao, )], can be also obtained.

Employing the boundary conditions for the tangential elec-
tric and magnetic field components at the aperture plane

we obtain the following integral equations for the tangential -

electric field components at the aperture |x| < a1/2
L 5 2(aon) | -
- YO Qon [ :| Joon
ao Z [ ( 0 )] ( )

2(an

B

n=—00
'z
S
z

5 e
n——OO

where E% and E? are the Fourier transforms of the z and z

electric field components at the aperture (y = 0).

)} —iea = (16)

an)

IV. APPLICATION OF GALERKIN’S METHOD

Galerkin’s procedure is applied [13] to the integral equations
(16), resulting in a homogeneous matrix equation for the
unknown expansion coefficients

ke Reizgllez]-m

K, im (Z , T )
The elements of matrix [K ] are given by

1m(p) Z z( Olon p'r(aon) ﬁm(a()n)
+“ E _an pr(an)Erm(an) (18)

where p and r denote x or z and

fros= [

For (17) to yield a nontrivial solution, the determinant of
[K] must to zero. This results in a determinantal equation
for the propagation constants in the positive and negative z
directions, 0, and (_, respectively. :

To evaluate elements of the matrix [K] the Fourier trans-
forms of basis functions in (19) need to be obtained. The basis
functions should contain the singular behavior of the electric
field components at the edges of metal fins in order to achieve
good numerical efficiency and accuracy for the determinantal
equation. The two tangential electric field components at
the aperture satisfy different edge conditions, and in the
conventional spectral domain approach, two sets of basis
functions are used. By integrating (19) by parts [13], it is
possible to describe the problem in terms of 9E%(z)/dx
and E®(z). These have the same r~% singularity at the fin
edges. Chebyshev polynomials, T, (z), are used for the basis

m(:c Jon® gy
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Fig. 2.. Cross section of an asymmetrical finline loaded with (a) sand-
wich ferrite-dielectric (SWFD), (b) double layer ferrite-dielectric (DLFD),
(c) double layer dielectric-ferrite (DLDF), (d) dual-ferrite (DF), and (e)
dual-ferrite-dielectric (DFD).. The relative dielectric constants of the ferrite
and dielectric regions are €, and €4, respectively. The heights of the air
layers in the upper and lower regions are ko and hq, respectively.

functions as they are orthogonal with respect to the sihgular
function, and for the E, even modes

OE® (r) 22\’ 2z
Eb =__—=mr - | — T- -
wm( ) ST 1 a1 2m41 al).
(20)
" form =0,1,---, N. For the F, odd modes, substitute 2m for

2m+1 in the above equation. It should be noted that the series
for E®,. for the E, odd modes starts from m = 1 instead of
zero since the zeroth terms of E®(z) is not zero at the fin
edges as the boundary condition requires.

V. RESULTS AND DISCUSSIONS

Several configurations will be investigated, and their cross
sections are given in Fig. 2. These are referred to as (a)
sandwich ferrite-dielectric (SWFD), (b) double layer ferrite-
dielectric (DLFD), (¢) double layer dielectric-ferrite (DLDF),
(d) dual-ferrite (DF), and (e) dual-ferrite-dielectric (DFD)
loaded asymmetric finline.

A. Convergence Test

Table 1 shows the convergence of solutions for
B4+ /o, B— [ Ko and the differential phase shift (3, —8_)/ko =
AfB/ke with N in (20) at 30 GHz, for the dominant mode of
the SWFD structure. Clearly, good convergence is achieved
using small values of N. In fact, N = 1 can be used to obtain
the solutions of B /ko and 8_/kg to four significant digits
and N = 2 is sufficient to achieve convergence of AfS/kg
to four significant digits. This fast convergence is attributed
not ‘only to the variational nature of the determination of
propagation constants using Galerkin’s method, but also
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: TABLE I
CONVERGENCE OF SOLUTIONS FOR 3+ /Kq, 8— /Ko AND AB3/Kg OF THE
DOMINANT MODE OF AN ASYMMETRICAL SANDWICH FERRITE-DIELECTRIC
LoapED FINLINE AT THE FREQUENCY OF 30 GHz oN N IN (20)
(Erf = Erd = 125 hf = hd =025 mm, ho = h1 = 3306mm,
ap = 2.1336 mm, a = 3.556 mm, a; = 1.2 mm, Hy = 500 Oe
AND My = 5000 Ga) ‘

N Bilks | BTk | (B —B)[ke
1 12.36690 | 2.18964 17726
2 12.36691 | 2.18960 17731
3 | 2.36690 | 2.18958 17732
4 | 2.36690 | 2.18956 17734
5 | 2.36690 | 2.18957 17733
6 | 2.36688 | 2.18954 17734

to the adequate choice of only one set of basis functions.
The convergence shown above is typical of that obtained at
other frequencies and for the other structures investigated
here. The computed data in the rest of this paper has been
obtained using N = 2.

B. Comparisons with Published Data

The accuracy of our solutions can be assessed by com-
parison with calculated and measured data available in the
literature for particular structures. The first comparison is with
computed data obtained by Kitazawa in [6] and by Geshiro
and Itoh in [5] for the symmetrical double-layer finlines with
a magnetic ferrite. The comparison is shown in Fig. 3 and
excellent agreement is apparent.

The particular symmetrical case with a dielectric substrate
is also considered. Present results are compared with both
the computed results obtained by the transverse resonance
diffraction (TRD) method and the measured results as reported
by Olley in [14]. This comparison is shown in Fig. 4. Again
good agreement is obtained.

C. Single Ferrite Case

It is well known that the single-layer ferrite-loaded planar
waveguide structures including symmetrical finlines do not
exhibit high nonreciprocity [4]. An additional high permittivity
dielectric layer is often introduced to improve nonreciprocal
characteristics [3]. We now investigate the differential phase
shift and the bandwidth that can be obtained in the SWFD,
DLFD, and DLDF structures shown in Fig. 2.

It is known that the useable bandwidth of a phase shifter
is limited at low end by the magnetic loss of the ferrite
and the lowest frequency of the bandwidth is determined by
fi = YMoy/0.7. In this paper My is chosen to be 5000 Ga
and therefore f; = 20 GHz. On the other hand, the excitation
of the higher-order modes limits the bandwidth at the high
end because signal propagation in the higher-order modes can
degrade the performance of the phase shifter. Therefore, in a
phase shifter with a fixed value of magnetization saturation,
a higher cut-off frequency of the first higher-order mode is
desirable.

SWFD Ref[6]

~—— This theory (forward wave)
This theory {backward wave)

30 40 50 60
Frequency (GHz)

Fig. 3. Comparison of the normalized propagation constants for the
dominant mode of symmetrical SWFD and DLDF loaded fin lines with
those reported by Kitazawa in [6] and by Geshiro and Itoh in [5]
(erf = €ra = 12.5,h5 = hg = 025 mm, hg = by = 2.1 mm,a0 = a =

235 mm,a; = IOmm,Hg = 500 Oe, and Mp = 5000 Ga).
T 6009
a,=2.31mm ”ffi;;e/e'e
08
(=]
0.6
é_ a,-5.15mm
04 - ——— this method
-------- TRD method [14]
0.2
O measured [14]
0 1 i 1 " i
4 6 8 10 12

Frequency (GHz)

Fig. 4. Comparison of the normalized propagation constants for the
dominant mode of symmetrical single-layer dielectric loaded fin
lines with computed and measured data [14] (hy = 0,erq = 2.2,
hg = 0254 mm, h; = 11.176 mm,a = 10.16 mm, ho = 1143 mm,
and ap = 10.16 mm).

Fig. 5 shows the normalized differential phase shifts of the
dominant mode of the three structures as a function of ag/a.
As ag/a decreases, the asymmetry becomes higher, and the
normalized differential phase shift increases for the SWEFD
and DLFD but decreases for the DLDF. Fig. 6 shows the
normalized propagation constants of the backward wave of
the dominant and first higher-order modes of the SWFD as a
function of ag/a. Clearly, as the asymmetry increases, the cut-
off frequency of the first higher-order mode increases, resulting
in an increase in the bandwidth. This behavior is also observed
for the DLFD and DLDF. The above results show that the
additional design degree of freedom of the asymmetry can be
used to enhance the bandwidth and nonreciprocity that can be
obtained.

Fig. 7 shows normalized propagation constants of the back-
ward waves of the dominant and first higher-order modes of
three double-layer structures as a function of frequency. The
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Fig. 5. Normalized differential phase shifts of the dominant mode of the
asymmetrical SWFD, DLFD, and DLDF loaded finlines as a function of
aofale,y = €,qg = 12.5,hy = hg = 025 mm, ho = h1 = 3.306 mm,
a = 3.556 mm,a; = 1.2 mm, Hy = 500 Oe, My = 5000 Ga, and
f = 30 GHz).

3
First mode
25
2t
o
-
-~ | 1.5
——a/a=0.6
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Y3 Ee— afa=1.0 _..:‘: Second mode
i
i
0 n | : i L i 12t L 1 L
20 25 ' 30 35 40 45 50
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Fig. 6. Normalized propagation constants of the backward waves
of the dominant and first higher-order modes of the asymmetrical
SWFD loaded finline as a function of frequency for various values of
aofa(erp = €,qg = 12.5,hy = hg = 025 mm, hg = hy = 3.306 mm,
a = 3.556 mm, a; = 1.2 mm, Hg = 500 Qe, and My = 5000 Ga).

cut-off frequencies of the first higher-order mode are almost
the same for the DLFD and DLDF, but lower by about 5 GHz
than that for the SWFD. Therefore, the bandwidth of the
SWED is much wider than that of the other two structures.
Fig. 8 compares the normalized differential phase shifts of
the dominant mode for the three structures as a function of
erq for different values of h,. For the SWFD and DLFD the
differential phase shift is always positive and increases as €rq
and hy increase. This occurs as the propagation constant for
the forward wave increases more quickly with increasing €4
and h4 than that for the backward wave. This is due to the
difference in the field distributions in the dielectric layer of
these two counter-propagating waves. On the other hand, for
the DLDF the differential phase shift is positive for small
values of .4, and can be equal to zero at a specific value
of e,4. Beyond this value of ¢,.4 the shift becomes negative
and its absolute value increases as &,.4 increases. It is also

SWFD
-——— DLFD
~ DLDF

35
Freq (GHz)

Fig. 7. Normalized propagation constants of the backward waves
of the dominant and first higher-order modes of asymmetrical
SWFD, DLFD, and DLDF loaded finlines as a function of frequency
(g5 = €pg = 12.5,hy = hg = 025 mm, hg = h; = 3.306 mm, ap =
21336 mm,e¢ = 3.556 mm,a; = 1.2 mm,Hy = 500 Oe, and
My = 5000 Ga).

0.4

H DLFD
A DLDF

€ rd

Fig. 8. Normalized differential
nant mode of the asymmetrical SWFD, DLFD, and DLDF
loaded finlines as a function of ¢,4 for different values of
ha(ery = 12.5,hy = 025 mm, ks + ho = hy + b1 = 3.556 mm,
ap = 2.1336 mm. a = 3.556 mm. a1 = 1.2 mm, Hy = 500 Oe, My =
5000 Ga, and f = 30 GHz).

phase  shifts of the domi-

evident that the SWFD offers the highest nonreciprocity in
propagation constants.

According to the above results, the SWFD is the best
choice among the double-layer single-ferrite loaded structures
for realizing good performance phase shifters in terms of
nonreciprocity and bandwidth.

D. Dual Ferrite Case

As demonstrated in the previous subsection, the double-
layer single-ferrite loaded structure can achieve very high
nonreciprocity by using a large value of relative permittivity
of the dielectric layer. However, the bandwidth is significantly
reduced as overmoding occurs at a lower frequency. The
dual ferrite (DF) structure is a structure that may increase
nonreciprocity without sacrificing bandwidth. The structure
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Fig. 9. Normalized differential phase shifts of the dominant mode of
the asymmetrical DF and SWFD loaded finlines as a function of fre-
quency (€ry = 12.5,hy = hgy = 025 .mm,hy = h; = 3.306 mum,
ap = 2.1336 mm, ¢ = 3.556 mm, a1 = 1.2 mm, Hp = 500 Oe, and
Mo = 5000 Ga). .

is shown in Fig. 2 and consists of metal fins sandwiched
between two ferrites. These ferrites are magnetically saturated
in opposite directions. Since the ellipticity of magnetic field
is opposite in the-two ferrites, nonreciprocity is expected to
be much higher than that of the corresponding single-ferrite
structure.

Fig. 9 shows the normalized differential phase shifts of the
dominant mode of the DF and the SWFD with ¢,4 = 19.0
as a function of frequency. Fig. 10 shows the normalized
propagation constants of the backward wave of the first two
modes of these two structures. Both structures have similar
nonreciprocity in the frequency range examined. However, the
cut-off frequency of the first higher-order mode for the SWFD
is lower by about 5 GHz than that for the DF, resulting in
a narrower bandwidth for the SWFD. The bandwidth of the
SWFD can be made wider by using a smaller value of &,4.
This, however, significantly reduces the nonreciprocity of this
structure. This can be clearly seen from the results for the
SWEFD with €,4 = 12.5, which are also included in Figs. 9
and 10. ' ,

In practice, dielectric layers have to be inserted between
the two ferrites in the dual-ferrite slotline structure to prevent
magnetic leakage from one ferrite to the other [15]. Also, the
addition of these thin high permittivity dielectric layers can
greatly increase the nonreciprocity. Consequently, we examine
the dual-ferrite-dielectric (DFD) finline structure in Fig. 2.

Fig. 11 shows the normalized peragatibn constants of for-
ward and backward waves of the dominant mode of the DFD,
and their differential phase shift, as a function of ¢;.4 for two
different values of h4. In this structure, the electromagnetic
field concentrates near the slot (in the dielectric layer) more
for the forward wave than for the backward wave. As a result,
the propagation constant of the forward wave increases more
rapidly than that of the backward wave as £qq4 increases,
yielding higher nonreciprocity. Such behavior has also been
seen in dual-ferrite slotlines [15]. ,

Fig. 12 shows normalized differential phase shifts of the
dominant mode of the modified DF as a function of hg for two

-

I First mode

4L — SWFD g 125 /)
| -——- SWFD e g125 /! \
0.5 - ] i Second mode
S !
. I H
0 N— ! " 1 Ly n 1 1 L
20 25 30 35 40 45 50
Frequency (GHz)

Fig. 10. Normalized propagation constants of backward waves of
the dominant and first higher-order modes of the asymmetrical
DF and SWFD loaded finlines as a function of frequency
(erf=12.5,hy =hg = 0.25 mm, ho = k1 =3.306 mm, ap = 2.1336 mm,
a = 3.556 mm, a1 = 1.2 mm, Hy = 500 Oe, and My = 5000 Ga).

4 Forward wave O ' o 1
| Backward wave A P j

AP/

Fig. 11. Normalized propagation constants and phase shift of the
dominant modes of the asymmetrical DFD loaded finline as a function
of .4 for h4y = 004 mm (——) and hy = 0.08 mm (- - - -).
(erf = 12.5,hy = 025 mm,hgy + ho = hg + h1 = 3.306 mm, ao
= 2.1336 mm, a = 3.556 mm,a; = 1.2 mm, Hy = 500 Oe, My =
5000 Ga, and f = 30 GHz).

different values of ¢,4. The differential phase shift increases
very rapidly with hgy when hy is small. There is an optimum
value of hy for maximum nonreciprocity. This value is quite
small, and the bandwidth is only a little less than in the
situation when hg = 0.

Fig. 13 shows the normalized differential phase shifts of the
dominant mode of the modified DF as a function of a;. From
this figure, we find that when a, increases, nonreciprocity
increases. Therefore, a relatively wide aperture can be chosen
to realize a phase shifter with higher nonreciprocity.

VI. CONCLUSION

An accurate, extended spectral domain analysis has been
presented for the nonreciprocal propagation characteristics
of asymmetrical multilayer finlines containing magnetized
ferrites. Computed results are in good agreement with cal-
culated and measured data available in the literature. Also,
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Fig. 12. Normalized differential phase shifts of the dominant mode of the
asymmetrical DFD loaded finline as a function of hg for different values
of Erd(frf = 12.5>,hf = 0.25 mm, hg + ho = hg + b1 = 3.306 mm,
ag = 2.1336 mm, a = 3.556 mm, a1 = 1.2 mm, Hy = 500 Oe, Mo =
5000 Ga, and f = 30 GHz).
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Fig. 13. Normalized differential phase shifts of the dominant mode of the

asymmetrical DFD loaded finline as a function of a; for different values of

grd(erp = 12.5,hy = 025 mm, hg = 0.04 mm, ho = h; = 3.266 mm,

ag = 2.1336 mm,a = 3.556 mm, Hy = 500 Oe, My = 5000 Ga, and
= 30 GHz).

the convergence of the solutions for nonreciprocal propagation
constants is very good.

The analysis can also be applied to other multilayer planar
structures with magnetized ferrites. Compared to the conven-
tional spectral domain approach, the extended method offers
several additional features. The method is applicable to planar
structures with nonuniform cross-section geometries. The re-
cursive algorithm can be used to efficiently derive the dyadic
Green’s function for multilayer anisotropic media. Further,
only one set of basis functions is needed to calculate the
Fourier transforms of the tangential electric field components
at the aperture interface.

It has been shown that compared with the conventional
finlines, the additional degree of freedom offered by the
asymmetry can be used to give higher nonreciprocity, except
for the double layer dielectric-ferrite case. Among the two-
layer configurations containing a single magnetized ferrite,

the sandwich ferrite-dielectric one offers the highest nonre-
ciprocity and the widest bandwidth. By increasing the relative
permittivity of the dielectric layer high nonreciprocity can be
obtained with single-ferrite structures, however, the bandwidth
becomes narrower.

The dual ferrite structure exhibits much higher nonreciproc-
ity without sacrificing the bandwidth compared to the single
ferrite structures. Further improvement in nonreciprocity can
be achieved by adding thin dielectric layers between the
ferrites. An optimum value of the thickness of the dielectric
layers for maximum nonreciprocity is apparent. This optimum
value is quite small, resulting in only a slight decrease in the
bandwidth. Therefore, the four-layer dual-ferrite finline is very
suitable for the applications to efficient nonreciprocal phase
shifters.

APPENDIX
DETERMINATION OF SUBMATRICES IN (6)

A. [P;) and [R))
For the dielectric layer

Pl=—L [ ACL-0anG:  —anf(G:+ Go)
T a2 4+ 32 |—anB(G1+ G2)  o2Gy - BPG,
1
[R ] . 1 ﬂZGg - a%G;; —anﬂ(Gg -+ G4):|
T2 + B2 |-anB(Gs +Gy)  alGs— B2G,
(22)

where

Gy = —jri/(wpo tanhr;h;),
Gy = —jweoeri/(ri tanh r;h;),

G3 = G1/coshr;h;
G4 = Go/ coshr;h,

2 _ .2 @2 2 2 _ 2
ri =a, + 0% — Kgeri, Ky = W logo-

For the ferrite layer

[P] =[Np][W]3!
[R;] = [Ng][WI3"

(23)
(24

where [W]5' is a 4 x 2 matrix consisting of the last two
columns of the inverse of the following matrix [W]

0 1 0 ZB
wi=|7 P G Y @)
41 Q42 a43 44
=[5 e ] e
[NR]:PL_'_[G(:;I ?_112/ a1(3)B ai/;BB] @
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with

a11 =Covy Y + Cyvg; ara =C1Y +C3
a13 =Coy_ + Cay_Z; a1a=C1 4+ CsZ
ag =Cev+Y + Covy; age = C5Y + (1
o3 =Coy_ + Coy_Z; 24 =Cs+C1Z

a1 =C1Y T, + Cov Y + C3T + Cyyy
asy =C1Y + Coyy YT + Cs + Cyyy Ty
a33 =C1T_ +Coy_ +C3ZT 4+ Cyy_Z
azqg =C1 + CoyT_ + C32Z + Cyy_ZT_
041 =C5Y Ty + Cov Y + CiTy + Coyy
gy =C5Y + Cev: YT + CL + Coy, Ty
aq3 =CsT_ + Coy_ + C1ZT_ + Coy_ 7
44 =Cs5 + Cgy_ T_+ C1Z + Coy_ZT_
Co = (ap, — k¥un)? = (k¥r)*  C1 = anfB(af, — wip)/Co
Cy = —H?Iian/C() C3 = —jwsoermﬂ/ﬁ?/@)
Cy = jweoeri(al — K2p,) /Co  Cs = jwpgrBal /Co
Co = —jwpolpr(ad — wipr) + w1871/ Co
B =P, /coshy_h;, Py =coshyih;
T_ =tanhvy_h;
Z=n/(02 =72) Y =m/(v} - )

T = tanh fy+hi,

B. [S;] and [T}]

[S:] and [T;] can be easily obtained from the expressions of
[R;] and [P;] by replacing h; by —h;, respectively.
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