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Analysis of Asymmetrical Multilayer Ferrite-Loaded

Finlines by the Extended Spectral Domain Approach
Z. Fan and Steve R. Pennock, Member, IEEE

Abstract-The spectral domain approach is extended to analyze
the nonreciprocal propagation characteristics of asymmetrical
multilayer fintincs containing magnetized ferrites. This extended
method offers several advantages. It can be applied to nonuni-

form cross-section geometries, uses only one set of basis functions,
and the dyadic Gkeen’s function is efficiently derived by a recur-
sive algorithm. Fast convergence is obtained and the accuracy of

the method is verified by comparison with available computed

and measured data. In comparison with symmetrical structures,
the additional design degree of freedom of the asymmetry can

be used to obtain wider bandwidth and higher nonreciprocity.

Of the various structures considered, a four-layer dual ferrite
(DF) structure is seen to be the best choice for realization of

nonreciprocal phase shifters with widest bandwidth.

L INTRODUCTION

F INLINES have been extensively investigated for use in

microwave and millimeter wave integrated circuits. A

wide variety of tinline circuit components have been developed

including nonreciprocal ferrite devices such as nonrecipro-

cal phase shifters, isolators, and circulators [1], [2]. Several

methods, including field expansion, mode-matching, network

analysis and the spectral domain approach as in [2]–[6], have

been reported for the analysis of nonreciprocal propagation

characteristics of single or multilayer ferrite-loaded finlines.

However, all these techniques treated only symmetrical strttc-

tures. The effects found in an asymmetrical structure, such as

is shown in Fig. 1 where a # a., have not been studied to

date. Furthertnc~re, only single-femite finline structures have

been considered and only their differential phase shift was

discussed.

Recently, the asymmetrical finline has been proposed [7]

for space applications. Several advantages over conventional,

symmetrical finlines are apparent, including ease of substrate

and device mounting, wider single-mode bandwidth, and the

additional design degree of freedom offered by the asymmet-

rical fin shielding. Devices such as filters and mixers have

been developed in the asymmetrical finline form, and the

propagation characteristics of the asymmetrical finlines with

a dielectric substrate have been analyzed using the spectral

domain method [7], [8]. To realize nonreciprocal components

at millimeter wave frequencies, ferrite layers need to be

inserted into a multilayer configuration. However, so far no

efforts have been devoted to the analysis of asymmetrical

multilayer finlines with magnetized ferrites.
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Fig. 1.

a

Cross section of an asymmetrical multilayer finline where any layer
c~ be dielectric or ferrite and coordinate system usedin the analysis.

The purpose of this paper is to extend the spectral domain

approach so that asymmetrical multilayer finlines containing

magnetized ferrites can be analyzed. We present a recursive

algorithm to derive the Fourier transformed dyadic Green’s

function for the different regions of the structures. Galerkin’s

procedure is applied to obtain solutions, and our data are seen

to compare favorably with published data. The advantages of

asymmetrical finlines are demonstrated, and the effects obtain-

able in various multilayer configurations on the nonreciprocity

and bandwidth are investigated.

II. FIELD REPRESENTATION BY FOURIER TRANSFORMS

Fig. 1 illustrates the cross section of an asymmetrical

multilayer finline and the coorclirrate system to be used in the

analysis. This structure consists of asymmetrically shielded

metal fins sandwiched between two multilayer substrates,

where any layer can be a magnetized ferrite or a dielectric.

The assumed time and z dependence exp j(wt – @,z) is for all

the field and current quantities, and omitted in the following

analysis for the sake of brevity.

Discrete Fourier transforms are used to represent the field

components in this structure, for instance

To satisfy the electric field boundary conditions at the side-

walls of the lower (y < O) and upper (y > O) regions, different

transform variables, a = a. and a = Qon, respectively, have
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to be chosen for these regions. In the lower region (y< O) the

values of an are equal to 2nn/a for the E= odd modes and to
(2n + 1)~/a for the E= even modes with n = O, +1, +2, ~~~.

For the upper region (y> O)a is replaced by a..

If the ith layer in the lower region is a lossless ferrite that is

magnetized to saturation in the z direction, it is characterized

by a scalar relative permittivity e,, and a permeability tensor

[5]

[1

100
(2)P = MO o p. –jfi

o jfi p,,

where PO is the free space permeability. ~. and K are depen-

dent on the angular frequency, the applied dc magnetic field

Ho and the saturation magnetization of the ferrite JMo.

From Maxwell’s curl equations we obtain coupled wave

equations for the z-directed electric and magnetic field com-

ponents in the Fourier transform domain

(3)

(4)

where T;, flh, T:, and rl. are given in [5].

Other Fourier transformed field components can be ex-

pressed in terms of fir and fiz and their derivatives. Mul-
tiplying (3) by q=, operating ~2/dy2 – ?; on (4) and adding

results in the following fourth-order differential equation for

E.

($-’’)(:-’’)E=o “)

The solution to the equation can be expressed in terms of linear

combinations of sinh and cosh functions with two different

transverse wavenumbers in the y direction and contains the

four unknown modal amplitudes. The coefficients are deter-

mined by introducing the tangential electric field components

on the upper and lower surfaces of the layer. Then the

relationship between the tangential magnetic and electric field

components on the surfaces z and j = i – 1 can be obtained

in the following matrix form

where the 2 x 2 submatrices [P,], [R,], [S,], and [T~] depend

only on the electromagnetic properties and the thickness of the

ith layer. These are given in the Appendix and will be used

to derive the recursive algorithm in the following section. If

the ith layer of the lower region is a dielectric (.u, = 1 and

K = O), and characterized by scalar relative permittivity cTL
and scalar permeability ~., the wave equations for ~z and

E. will be uncoupled. There then exist TE-to-y and TM-to-y

modes, whose solutions for field components are well known

[9]. In this case, the elements of the submatrices in (6) can be

easily obtained, and these are also given in the Appendix.

111. RECURSIVE DERIVATION OF THE GREEN’S FUNCTION

To derive the integral equations for the tangential electric

field components on the aperture plane (y = O), Green’s

functions for both regions have to be obtained first. There are

many techniques for deriving the multilayer Green’s functions.

These include the spectral domain immitance approach [10],

the mixed spectral domain approach [8], the matrix method

[1 1], and the equivalent boundary method [12]. Most of them

assume isotropic media. Others can treat anisotropic media,

but cannot be applied to structures with nonuniform cross

sections. We now present a new recursive algorithm to derive

the Green’s functions for the multilayer anisotropic structure

with a nonuniform cross section as shown in Fig. 1. First, we

consider the lower region (y < O). The relationship between

the tangential magnetic and electric field components at y =

0– and the lower surface of the jth layer can be expressed

in the following matrix

[j!j5]=K~~ ~~lfj$j vx ~
It should be noted that in (6) and (7) the components

HZ, H., E,, and EZ are continuous at the interface between

the jt h and it h layers. Similarly, we can establish the

following relationship between the tangential magnetic and

electric field components at y = 0– and the lower surface

of the ith layer

[~~]]=1$: Wfjjq ‘8)
Combining (6) with (7), the submatrices in (8) can be derived

in terms of the submatrices in (6) and (7). This results in the

following recursive equations

[p(o,’)] = [p(o~)] + [s@,~)][v][R@~)] (9)

[N”)] = [Rt][v][lw’)] (lo)
[C#L)]= -[S(W][V][SJ (11)

[T(o’)] = -[R,] [T’] [s,]+ [q (12)

where i= 2,3,... , k (k is the number of layers in the lower

region) and

[v] = [u]-’, [u] = [P,] - [N’)]. (13)

For i = 1, we have

(14)

The tangential electric field components must be zero at the

bottom conducting plane of the lower region, and using (8)
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with i = k, the magnetic field Green’s function for the lower

region can be c)btained as follows:

where [Y] = [.P(O~~J]. Similarly the magnetic field Green’s

function for the upper region, [Y” (aOn)], can be also obtained.

Employing the boundary conditions for the tangential elec-

tric and magnetic field components at the aperture plane

we obtain the following integral equations for the tangential

electric field components at the aperture Iz I < al/2

where E: and E: are the Fourier transforms of the z and z

electric field components at the aperture (y = 0).

IV. APPLICATION OF GALERKIN’S METHOD

Galerkin’s procedure is applied [13] to the integral equations

(16), resulting in a homogeneous matrix equation for the

unknown expansion coefficients

[ 1[ 1
K~fin(z,z) F&($, 2’) C.m = [0]. (17)
Ki,n(z’, z) Km(z’, 2’) Czm

The elements of matrix [K] are given by

m’

I&m(p, r-) = : ~ E:i(–aon)Y:r(aon) E:m(ao.)
n.—m

where p and r denote x or z and

For (17) to yield a nontrivial solution, the determinant of

[K] must to zero. This results in a determinantal equation

for the propagation constants in the positive and negative z

directions, ~+ and ~_, respectively.

To evaluate elements of the matrix [K] the Fourier trans-

forms of basis functions in (19) need to be obtained. The basis

functions should contain the singular behavior of the electric

field components at the edges of metal fins in order to achieve

good numerical efficiency and accuracy for the determinantal

equation. The two tangential electric field components at
the aperture siitisfy different edge conditions, and in the

conventional slpectral domain approach, two sets of basis

functions are used. By integrating (19) by parts [13], it is

possible to describe the problem in terms of ~13j(x)/dz

and E:(z). These have the same r–0”5 singularity at the fin

edges. Chebyshlev polynomials, Tm (z), are used for the basis

(a)

I 1 I I

(b) (c)

(d) (e)

Fig. 2. Cross section of an asymanetricat finline loaded with (a) sand-
wich ferrite-dielectric (SWFD), (b) double layer ferrite-dielectric (DLFD),
(c) double layer dielectric-ferrite (DLDF), (d) dual-ferrite (DF), and (e)
dud-ferrite-dielectric (DFD). The relative dielectric constants of the ferrite

and dielectric regions are e,f and Crd, respectively. The heights of the air
layers in the upper and lower regions are ho and hl, respectively.

functions as they are orthogonal with respect to the singular

function, and for the E= even modes

dE:m(x)
zm(~) = ax =[+)2]-1’2T2m+I(;),

(20)

form =O,l,. . . , N. For the E, odd modes, substitute 2m for

2m + 1 in the above equation. It should be noted that the series

for Elm for the E. odd modes starts from m = 1 instead of

zero since the zeroth terms of E:(z) is not zero at the fin

edges as the boundary condition requires.

V. RESULTS AND DISCUSSIONS

Several configurations will be investigated, and their cross

sections are given in Fig. 2. These are referred to as (a)

sandwich ferrite-dielectric (SWFD), (b) double layer ferrite-

dielectric (DLFD), (c) double layer dielectric-ferrite (DLDF),

(d) dual-ferrite (DF), and (e) dual-ferrite-dielectric (DFD)

loaded asymmetric finline.

A. Convergence Test

Table I shows the convergence of solutions for

P+/Ko, @-/Ko and the differential phase shift (~+ –~_ )/Ko =
A@/Ko with IV in (20) at 30 GHz, for the dominant mode of

the SWFD structure. Clearly, good convergence is achieved
using small values of N. In fa~t, N = 1 can be used to obtain

the solutions of /3+ /Ko and ~_ /Ko to four significant digits

and N = 2 is sufficient to achieve convergence of A~/Ko

to four significant digits. This fast convergence is attributed

not only to the variational nature of the determination of

propagation constants using Galerkin’s method, but also
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TABLE I

CONVERGENCEOF SOLUTIONSFOR b+ /tco, (i f tco AND &3/Ko OF THE

DOMINANT MODE OF AN ASYMMETRICAL SANDWICH FEIUUTE-DIELECTRIC

LOADED FrNLrNE AT THE FREQUENCYOF 30 GHz ON N m (20)

(srf = Erd = 12.5, hf = hd = 0.25 mm, hO = hI = 3.306 mm,

ao = 2.1336 mm, a = 3.556 mm, al = 1.2 mm, Ho = 500 Oe

AND MO = 5000 Ga)

FN P+/b I Llko (P+– P-)/to
1 2.36690 I 2.18964 .17726,
2 2.36691 2.18960 .17731

3 2.36690 2.18958 .17732

4 2.36690 2.18956 .17734

5 2.36690 2.18957 .17733

6 2.36688 2.18954 .17734

to the adequate choice of only one set of basis functions.

The convergence shown above is typical of that obtained at

other frequencies and for the other structures investigated

here. The computed data in the rest of this paper has been

obtained using N = 2.

B. Comparisons with Published Data

The accuracy of our solutions can be assessed by com-

parison with calculated and measured data available in the

literature for particular structures. The first comparison is with

computed data obtained by Kitazawa in [6] and by Geshiro

and Itoh in [5] for the symmetrical double-layer firtlines with

a magnetic ferrite. The comparison is shown in Fig. 3 and

excellent agreement is apparent.

The particular symmetrical case with a dielectric substrate

is also considered. Present results are compared with both

the computed results obtained by the transverse resonance

diffraction (TRD) method and the measured results as reported

by Olley in [14]. This comparison is shown in Fig. 4, Again

good agreement is obtained.

C. Single Ferrite Case

It is well known that the single-layer ferrite-loaded planar

waveguide structures including symmetrical finlines do not

exhibit high nonreciprocity [4]. An additional high permittivity

dielectric layer is often introduced to improve nonreciprocal

characteristics [3]. We now investigate the differential phase

shift and the bandwidth that can be obtained in the SWFD,

DLFD, and DLDF structures shown in Fig. 2.

It is known that the useable bandwidth of a phase shifter

is limited at low end by the magnetic loss of the ferrite

and the lowest frequency of the bandwidth is determined by

fZ = 7~o/O.7. In this paper A!fcI is chosen to be 5000 Ga
and therefore $1 = 20 GHz. On the other hand, the excitation

of the higher-order modes limits the bandwidth at the high

end because signal propagation in the higher-order modes can

degrade the performance of the phase shifter. Therefore, in a

phase shifter with a fixed value of magnetization saturation,

a higher cut-off frequency of the first higher-order mode is

desirable.
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. . . . . . This theory (backward wave)

-

’30 80
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Fig. 3. Comparison of the normalized propagation constants for the
dominant mode of symmetrical SWFD and DLDF loaded fin lines with
those reported by I&azawa in [6] and by Geshiro and Itoh in [5]

(Gf = %i = 12.5, hf = hd = 0.25 mm, ho == hI = 2.1 mm, aO = a =

2.35 mm, aI = 1.0 mm, HO = 5000., and MrO = 5000 G.).

1
a1=2.31 mm

“%
0.8 -

f;

w

fyO0.6 -

a
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0.4 - ,’ /,’ —— this method

------ TRD method [14]
0.2 -’”
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Frequency (GHz)

Fig. 4. Comparison of the normalized propagation constants for the

dominant mode of symmetrical single-layer dielectric loaded fin

lines with computed and measured data [14] (hf = 0, %i = 2.2,
hd = 0.254 mm, hl = 11.176 mm, a = 10.16 mm, ho = 11.43 mm,

and rzo = 10.16 mm).

Fig. 5 shows the normalized differential phase shifts of the

dominant mode of the three structures as a function of so/a.

As so/a decreases, the asymmetry becomes higher, and the

normalized differential phase shift increases for the SWl%

and DLFD but decreases for the DLDF. Fig. 16 shows the

normalized propagation constants of the backward wave of

the dominant and first higher-order modes of the SWFD as a

function of aO/a. Clearly, as the asymmetry increases, the cut-

off frequency of the first higher-order mode increases, resulting

in an increase in the bandwidth. This behavior is also observed

for the DLFD and DLDF. The above results show that the

additional design degree of freedom of the asymmetry can be

used to enhance the bandwidth and nonreciprocity that can be

obtained.

Fig. 7 shows normalized propagation constants of the back-

ward waves of the dominant and first higher-order modes of

three double-layer structures as a function of frequency. The
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Fig. 6. Normalized propagation constants of the backward waves
of the dominant and first higher-order modes of the asymmetrical
SWFD loaded fnnline as a function of freqnency for various values of

ao/a(%f = g~d = 12.5, hf = hd = 0.25 mm, ho = hl = 3.306 mm,
a = 3.556 mm, al = 1.2 mm, HO = 500 Oe, and Afo = 5000 Ga).

cut-off frequencies of the first higher-order mode are almost

the same for the DLFD and DLDF, but lower by about 5 GHz

than that for the SWFD. Therefore, the bandwidth of the

SWFD is much wider than that of the other two structures.

Fig. 8 compares the normalized differential phase shifts of

the dominant mode for the three structures as a function of

e,d for different values of hd. For the SWFD and DLFD the

differential phase shift is always positive and increases as C.d

and hd increa~e. This occurs as the propagation constant for

the forward wave increases more quickly with increasing %d

and hd than that for the backward wave. This is due to the
difference in the field distributions in the dielectric layer of

these two counter-propagating waves. On the other hand, for

the DLDF the differential phase shift is positive for small

vah.tes of %d, and can be equal to zero at a specific value

of ETd. Beyond this value of Erd the shift becomes negathe

and its absolute vah.te increases as erd increases. It is dSO
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Fig. 7. Normalized propagation constants of th,e backward waves
of the dominant and first higher-order modes of asymmetrical
SWFD, DLFD, and DLDF loaded tinlines as a function of frequency
(srf = &rd = 12.5, hf = hd = 0.25, mm, hO = hl = 3.306 mm, ao =
2.1336 mm, a = 3.556 mm, al = 1.2 mm, Ho = 500 Oe, and
M. = 5000 Ga).
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Fig. 8. Normalized differential phase Shifts of the domi-
nant mode of the asymmetrical SWFD, DLFD, and DLDF
loaded finlines as a function of &rd for different values Of
hd(E.f = 12.5, hf = 0.25 mm, hf + hO = ~d + fLI = 3.556 mm,

ao = 2.1336 mm a = 3.556 mm, al = 1.2 mm, ~o = 500 Oe, MO =
5000 Ga, and $ = 30 GHz).

evident that the SWFD offers the highest nonreciprocity in

propagation constants.

According to the above results, the SWFD is the best

choice among the double-layer single-ferrite loaded structures

for realizing good performance phase shifters in terms of

nonreciprocity and bandwidth.

D. Dual Ferrite Case

As demonstrated in the previous subsection, the double-
layer single-femite loaded structure can achieve very high

nonreciprocity by using a large value of relative permittivity

of the dielectric layer. However, the bandwidth is significantly

reduced as overmoding occurs at a lower frequency. The

dual ferrite (DF) structure is a structure that may increase

nonreciprocity without sacrificing bandwidth. The structure
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Fig. 9. Normalized deferential phase shifts of the dominant mode of

the asymmetrical DF and SWFD loaded tinlines as a function of fre-
quency (e.f = 12.5, hf = IJd = 0.25 mm, ho = hl = 3.306 mm,

ao = 2.1336 mm, a = 3.556 mm, al = 1.2 mm, HO = 500 Oe, and
MO = 5000 Ga).

is shown in Fig. 2 and consists of metal fins sandwiched

between two ferrites. These ferrites are magnetically saturated

in opposite directions. Since the ellipticity of magnetic field

is opposite in the two ferrites, nonreciprocity is expected to

be much higher than that of the corresponding single-ferrite

structure.

Fig. 9 shows the normalized differential phase shifts of the

dominant mode of the DF and the SWFD with &rd = 19.0

as a function of frequency. Fig. 10 shows the normalized

propagation constants of the backward wave of the first two

modes of these two structures. Both structures have similar

nonreciprocity in the frequency range examined. However, the

cut-off frequency of the first higher-order mode for the SWFD

is lower by about 5 GHz than that for the DF, resulting in

a narrower bandwidth for the SWFD. The bandwidth of the

SWFD can be made wider by using a smaller value of Srd.

This, however, significantly reduces the nonreciprocity of this

structure. This can be clearly seen from the results for the

SWFD with Erd = 12.5, which are also included in Figs. 9

and 10.

In practice, dielectric layers have to be inserted between

the two ferrites in the dual-ferrite slotline structure to prevent

magnetic leakage from one ferrite to the other [15]. Also, t~e

addition of these thin high permittivity dielectric layers can

geatly increase the nonreciprocity. Consequently, we examine

the dual-ferrite-dielectric (DFD) finline structure in Fig. 2.

Fig. 11 shows the normalized propagation constants of for-

ward and backward waves of the dominant mode of the, DFD,

and their differential phase shift, as a function of Srd for two

different values of hd. In this structure, the electromagnetic

field concentrates near the slot (in the dielectric layer) more

for the forward wave than for the backward wave. As a result,

the propagation constant of the forward wave increases more

rapidly than that of the backward wave as srd increases,

yielding higher nonreciprocity. Such behavior has also been

seen in dual-ferrite slotlines [15].

Fig. 12 shows normalized differential phase shifts of the

dominant mode of the modified DF as a function of hd for two
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Fig. 10. Normalized urooagation constants of backward waves of

th~ dominant and ti~st - h~gher-order modes of the asymmetrical
DF and SWFD loaded tirrlines as a function uf frequency
(=rf = 12.5, hf =hd = 0.25 mm, ho = hl = 3.306 mm, ao = 2.1336 mm,
a = 3.556 mm, al = 1.2 mm, Ho = 500 Oe, and M. = 5000 Ga).

L

&2 - 1
,.....

1 - - 0.5

4

y“
%

Fig. 11. Normalized propagation constants and phase shift of the

dominant modes of the asymmetrical DFD loaded tinline as a function
of &rd for hd = 0.04 mm (— ) and hd = 0.08 mm (- - - -).
(&,f = 12.5, h~ = 0.25 mm, h~ + hO = hd +- hl = 3.306 mm, aO

= 2.1336 mm, a = 3.556 mm, al = 1.2 mm, HO = 500 Oe, L!fo =

5000 Ga, and f = 30 GHz).

different values of &rd. The differential phase shift increases

very rapidly with hd when hd is small. There is an optimum

value of hd for maximum nonreciprocity. This value is quite

small, and the bandwidth is only a little less than in the

situation when hd = O.

Fig. 13 shows the normalized differential phase shifts of the

dominant mode of the modified DF as a function of al. From

this figure, we find that when al increases, nonreciprocity

increases. Therefore, a relatively wide aperture can be chosen

to realize a phase shifter with higher nonreciprocity.

VI. CONCLUSION

An accurate, extended spectral domain analysis has been

presented for the nonreciprocal propagation characteristics

of asymmetrical multilayer finlines containing magnetized

ferrites. Computed results are in good agreemertt with cal-

culated and measured data available in the literature. Also,
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the convergence of the solutions for nonreciprocal propagation

constants is very good.

The analysis can also be applied to other mukilayer planar

structures with magnetized ferrites. Compared to the conven-

tional spectral domain approach, the extended method offers

several additional features. The method is applicable to planar

structures with nonuniform cross-section geometries. The re-

cursive algorithm can be used to efficiently derive the dyadic

Green’s function for multilayer anisotropic media. Further,

only one set clf basis functions is needed to calculate the

Fourier transforms of the tangential electric field components

at the aperture interface.

It has been shown that compared with the conventional

finlines, the additional degree of freedom offered by the

asymmetry can be used to give higher nonreciprocity, except

for the double layer dielectric-ferrite case. Among the two-

layer configurations containing a single magnetized ferrite,

the sandwich ferrite-dielectric one offers the highest nonre-

ciprocity and the widest bandwidth. By increasing the relative

permittivity of the dielectric layer high nonreciprocity can be

obtained with single-ferrite structures, however, the bandwidth

becomes narrower.

The dual ferrite structure exhibits much higher nonreciproc-

ity without sacrificing the bandwidth compared to the single

ferrite structures. Further improvement in nonreciprocity can

be achieved by adding thin dielectric layers between the

ferrites. An optimum value of the thickness of the dielectric

layers for maximum nonrecipmcity is apparent. This optimum

value is quite small, resulting in only a slight decrease in the

bandwidth. Therefore, the four-layer dual-ferrite finline is very

suitable for the applications tc~ efficient nonreciprocal phase

shifters.

APPENDIX
.

DETERMINATION OF SUBMATRICES IN (6)

A. [P;] and [R,]

For the dielectric layer

(21)

[R,] = 1
[

/L32G3– Q:G4 –a./XG3 + G4)
~: + p2 –@(G3 + G4) cu;G3 – ~2G4 1

(22)

where

G1 = –jr~/(wKo tanhrih~), GA = G1/ cosh rihi

G2 = –jwsOs,i/(ri tanh rih~), Gd = Gz/ cosh rih~

r: = a: + /62 – K:%, K: = Wzfloso .

For the ferrite layer

[P,] = [Np][l’’v];l (23)

[R,] = [iV~][W];l (24)

where [w]; 1 is a 4 x 2 matrix consisting of the last two

columns of the inverse of the following matrix [w]

ro 1 0 ZB 1

asd
[~~1= [_Y;+3 ::. -1 1

(26)

[

a13B a14B
[N.] = * a:’ :; () -B

1
(27)
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with

all =C2~+Y+C4~+; alz =CIY+C3

a13 =C27_ +C47_Z; a14 = Cl + C3Z

a’21 = cfj~+y + 6’27+; azz = C.5Y + CI

a23 = C67_ + C27_z; a24 = C5 +CIZ

a31 = CIYT+ + C27+Y + C31’+ + C47+

a32 = CIY + CZy+YT+ + C3 + C47+T+

a33 = CIT. + C27– + C3ZT– + C47– Z

a34 = Cl + C27. T_ + C3Z + C47_ZT–

aql = C5YT+ + cfj~+y + CIT+ + C27+

a42 = C5Y + C67+YT+ + Cl + C27+T+

a43 = CijT– + C67. + CIZT. + C27– Z

a44 = C5 + C67. T. + CIZ + C27. ZT–
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co = (cl: – Kj&r)2 – (K;K)2 c1 = aJ?(ct: – K~/4.)/co
C2= –K:tKtn/clJ C3 = –jw&o&r@l$:/co

CA= jWE(I&r2(CS: - K: Pr)/CO C5 = jW~I)K/?Cl:/co

(36 = –jwpo[pr(a: – K~~T) + KjK2]/CO

B = Pf/ COSh ~- hi , P+ = cosh y+hi

T+ = tanh~+hi, T- = tanh ~-hi

z =7/e/(~: – 7:) y = wJ(7; – i)

B. [Si] and [Ti]

[Si] and [Ti] can be easily obtained from the expressions of

[hi] and [Pi] by replacing ha by -hi, respectively.
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